5478673

NONAQUEOUS SECONDARY BATTERY

Funatsu Eiji Kanagawa, JAPAN assigned to Fuji Photo Film Co Ltd

A nonaqueous secondary battery comprises an anode active material, a cathode active material and an electrolytic solution. The anode active material comprises a transition metal oxide, and the electrolytic solution is prepared by dissolving a fluorine-containing lithium salt in a mixed solvent comprising ethylene carbonate and at least one selected from the group consisting of chain carbonic acid esters, cyclic carbonic acid esters, cyclic esters, chain ethers and cyclic ethers.

5478674

NONAQUEOUS ELECTROLYTE-SECONDARY BATTERY

Miyasaka Tsutomu Minani ashigara, JAPAN assigned to Fuji Photo Film Co Ltd

A lithium ion type nonaqueous electrolyte-secondary battery which comprises a positive electrode which comprises, as an active material, a compound oxide represented by the following chemical formula (I): (*See Patent for Tabular Presentation*) PS wherein A represents at least one alkali element selected from the group consisting of Na and K; M represents at least one transition element selected from the group consisting of Co, Mn and Ni; J represents an element having a glass-forming ability selected from the group consisting of B, Si, Ge, P,V, Zr, Sb and Ti; 0.8< or =x< or =1.3; 0< or =y< or =0.2; 0.8< or =z< or =2.0; 0.01< or =m< or =0.2; and 2.0 < or =p < or =2.7; a negative electrode; and a nonaqueous electrolyte. The positive electrode-active material permits the production of nonaqueous electrolyte lithium type secondary batteries having excellent charge-discharge characteristics, discharge voltages and cycle properties.

5478675

SECONDARY BATTERY

Nagaura Toru Fukuoka, JAPAN assigned to Hival Ltd

A nonaqueous electrolyte secondary battery comprising a cathode, an anode, a separator and a nonaqueous electrolyte, wherein a spinel type lithium manganese complex oxide is used as main active substance for the cathode, which is characterized in that a solid state lithium ion conductor is mixed with the main active substance in the cathode.

5480462

METHOD OF FORMING BUTTON-TYPE BATTERY LITHIUM ELECTRODES

Tuttle Mark E Boise, ID, UNITED STATES assigned to Micron Communications Inc

A method of forming a button-type lithium electrode includes: a) masking an electrically conductive sheet with a material to which elemental lithium will not appreciably adhere to define a masked portion and an unmasked portion, the unmasked portion being in the shape of the desired electrode being formed; b) applying molten lithium to the masked sheet to cause elemental lithium to adhere to the unmasked portion but not appreciably adhere to the masked portion; alternately, directing a lithium stream onto the sheet; c) solidifying the lithium on the unmasked portion to in situ form a lithium electrode; and d) after solidifving. removing the masking material from the masked portion of the sheet. An alternate method includes: a) providing a release liner sheet having elemental lithium adhered thereto in the form of a series of discrete patterns having a size and shape of the lithium electrodes being formed; b) providing an electrically conductive sheet having an exposed surface which is divisible into a plurality of areas; c) laminating the release liner sheet with the conductive sheet to adhere the series of discrete elemental lithium patterns onto the respective sheet areas; d) pulling the release liner sheet from the conductive sheet and discrete lithium patterns. leaving the discrete lithium patterns adhering to the conductive sheet; and e) cutting and forming a plurality of discrete battery terminal housing members from the areas of the sheet, with each of the discrete battery terminal housings bearing one of the discrete lithium patterns.